Trondheim 2015-06-12

Clustering of chiral particles in flows with broken parity invariance
 K. Gustavsson ${ }^{1)}$, L. Biferale ${ }^{1)}$

1) Department of Physics, University of Tor Vergata, Italy

Spherical particle

Equations for velocity v and angular velocity ω for small spherical particle at position r : Happel \& Brenner, Low Reynolds number hydrodynamics (1963)

$$
\begin{aligned}
\dot{\boldsymbol{v}} & =\frac{1}{\tau_{\mathrm{p}}}[\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v}] \\
\dot{\boldsymbol{\omega}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\frac{10}{3}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})\right]
\end{aligned}
$$

u Fluid velocity
Ω Half fluid vorticity
τ_{p} Particle relaxation time
Dynamics statistically invariant under rotations and reflections if u statistically invariant under rotations and reflections

Internal reflection

Particle symmetries

| Rotation invariance |
| :---: | :---: | :---: |
| Reflection |
| invariance |

Example of an isotropic helicoid

Recipe from Lord Kelvin:
"An isotropic helicoid can be made by attaching projecting vanes to the surface of a globe in proper positions; for instance cutting at 45° each, at the middles of the twelve quadrants of any three great circles dividing the globe into eight quadrantal triangles."

Kelvin, Phil. Mag. 42 (I87I)

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
Start with a sphere

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
Draw 3 great circles

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
\checkmark Draw 3 great circles
Identify 12 vane positions at midpoints of quarter-arcs

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
\checkmark Draw 3 great circles
\checkmark Identify 12 vane positions at midpoints of quarter-arcs
Put a vane on each vane position (45° to arc line)

Chirality

In a constant flow u, the isotropic helicoid starts spinning around the flow direction with angular velocity ω.
The spinning direction depends on the chirality of the vanes.

Motion of an 'isotropic helicoid'

Equations for velocity v and angular velocity ω for small isotropic helicoid:

Happel \& Brenner, Low Reynolds number hydrodynamics (I963)

$$
\begin{aligned}
\dot{\boldsymbol{v}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v}+\frac{2 a}{9} C_{0}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})\right] \\
\dot{\boldsymbol{\omega}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\frac{10}{3}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})+\frac{5}{9 a} C_{0}(\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v})\right]
\end{aligned}
$$

Stokes' law translation - rotation coupling (scalar)
$a=\sqrt{5 I_{0} /(2 m)}$ Particle 'size’ (defined by mass m and moment of inertia I_{0})
C_{0} Helicoidality
Ratio of rotational and translational inertia fixed to that of sphere

Equations break spatial reflection symmetry (ω pseudovector)

Dimensionless parameters

Stokes number $\quad \mathrm{St} \equiv \frac{\tau_{\mathrm{p}}}{\tau_{\eta}} \quad$ Size $\quad \bar{a} \equiv \frac{a}{\eta} \quad$ Helicoidality C_{0} with τ_{η} and η smallest time- and length scales of flow.

Dynamics may grow indefinitely unless $-\sqrt{27}<C_{0}<\sqrt{27}$.
St and \bar{a} constrained by particle density higher than that of the fluid and geometrical size must be smaller than η.

Simulations and theory is done using a random single-scale flow characterised by the Kubo number

$$
\mathrm{Ku} \equiv \frac{u_{0} \tau_{\eta}}{\eta}
$$

with u_{0} typical speed of flow.

Clustering at small St

Expand compressibility of particle-velocity field $\nabla \cdot v$ in small $\mathrm{St} \sim \tau_{\mathrm{p}}$

$$
\nabla \cdot v=-\frac{27}{27-C_{0}^{2}} \tau_{\mathrm{p}}\left[\operatorname{Tr}\left(\nabla u^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}}\right)-\frac{1}{15} \operatorname{aC}_{0} \operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \nabla \boldsymbol{\Omega}^{\mathrm{T}}\right)\right]
$$

Reflection-invariant systems have $\left\langle\operatorname{Tr}\left(\boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle=0$ Isotropic helicoids violate that relation $\left\langle\operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \nabla \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle \propto \tau_{\mathrm{p}} \mathrm{C}_{0}$
\Rightarrow In a parity-invariant isotropic flow clustering does not depend on sign of C_{0}

Clustering at small St in random flow

— Small-Ku theory Gustavsson \& Mehlig EPL 96 (20II) -Gustavsson \& Mehlig
arXiv:1412.4374 (2014)
$0^{1} \quad====$ Small- St limit

$$
\langle\nabla \cdot v\rangle \tau_{\eta} \sim-\frac{27 \mathrm{Ku}^{4} \mathrm{St}^{2}\left(1800+7 \bar{a}^{2} C_{0}^{2}\right)}{20\left(27-C_{0}^{2}\right)^{2}}
$$

O Spherical particle ($C_{0}=0$)
\diamond Isotropic helicoid ($C_{0}=3$ or $C_{0}=-3$)

Where do particles go?

Inertial particles sample the flow preferentially (e.g. spiral out if vortices) Local helicity $H \equiv 2 \boldsymbol{u} \cdot \Omega$

Moments $\left\langle H^{n}\right\rangle$

Distribution $P(H)$

Probability to be in region with negative helicity

$$
\begin{aligned}
P(H<0)=0.5+\bar{a} C_{0} & \mathrm{Ku}^{2} \mathrm{St} \\
& \times \frac{15 \sqrt{5}\left(50 C_{0}^{4}-729(10+3 \mathrm{St})(-5+\mathrm{St}(5+6 \mathrm{St}))+135 C_{0}^{2}(-20+\mathrm{St}(7+15 \mathrm{St}))\right)}{2 \pi\left(5 C_{0}^{2}-27(1+2 \mathrm{St})(5+3 \mathrm{St})\right)\left(10 C_{0}^{2}-27(1+\mathrm{St})(10+3 \mathrm{St})\right)^{2}}
\end{aligned}
$$

Probability of negative helicity

$$
P(H<0)(\%) \quad C_{0}=0 \quad C_{0}=3 \quad C_{0}=5 \quad C_{0}=5.19
$$

$$
\begin{aligned}
P(H<0)=0.5+\bar{a} C_{0} & \mathrm{Ku}^{2} \mathrm{St} \\
& \times \frac{15 \sqrt{5}\left(50 C_{0}^{4}-729(10+3 \mathrm{St})(-5+\mathrm{St}(5+6 \mathrm{St}))+135 C_{0}^{2}(-20+\mathrm{St}(7+15 \mathrm{St}))\right)}{2 \pi\left(5 C_{0}^{2}-27(1+2 \mathrm{St})(5+3 \mathrm{St})\right)\left(10 C_{0}^{2}-27(1+\mathrm{St})(10+3 \mathrm{St})\right)^{2}}
\end{aligned}
$$

Flow with helical asymmetry

Break parity invariance of flow by removing selected Fourier modes
Mussacchio, Biferale \& Toschi, J. Fluid Mech. 730 (20I3)
Helicity parameter K
$K>0$ Right-handed structures $(H=2 u \cdot \Omega>0)$ more common $K<0$ Left-handed structures ($H=2 u \cdot \Omega<0$) more common

Probability density of flow helicity H

$$
\begin{aligned}
& K=0 \\
& K=-0.5 \\
& K=-1
\end{aligned}
$$

Clustering at small St in random flow

$$
\begin{aligned}
\mathrm{Ku} \equiv \frac{u_{0} \tau_{\eta}}{\eta} & =0.1 \\
\bar{a} & =1
\end{aligned}
$$

$\overline{\overline{\overline{\underline{~ S ~}}}}$ Small－Ku theory Gustavsson \＆Mehlig EPL 96 （201I）三ミ三ミミSmall－St limit

O Spherical particle（ $C_{0}=0$ ）in neutral flow（ $K=0$ ）
\square Right－handed particle $\left(C_{0}=3\right)$ in left－handed flow $(K=-1)$
\diamond Right－handed particle（ $C_{0}=3$ ）in neutral flow（ $K=0$ ）
Δ Right－handed particle $\left(C_{0}=3\right)$ in right－handed flow（ $K=1$ ）

Conclusions

Isotropic helicoids are rotation invariant particles which break reflection invariance (two chiralities)

Coupling between translational and rotational degrees of freedom changes dynamics compared to spherical particles (modified clustering, preferential sampling etc.)

The two chiralities may show different dynamics if the particle size is not too small and flow is persistent

Flows with broken parity invariance increase the differences in the dynamics of the two particles

